Элементарная и близкие к ней логические эквивалентности классических и универсальных алгебр
4.4 из 5, отдано 25 голосов
В монографии рассматриваются вопросы классификации классических и универсальных алгебр в тех или иных естественных языках математической логики. С подробными доказательствами излагаются классические результаты: элементарная эквивалентность булевых алгебр и абелевых групп, теорема Кейслера—Шелаха об изоморфизме, теорема Мальцева об элементарной эквивалентности линейных групп над полями. Также в книге приведены некоторые результаты авторов в этом направлении: элементарная эквивалентность линейных групп над кольцами и телами, элементарная эквивалентность решеток свободных алгебр, элементарная эквивалентность колец эндоморфизмов и групп автоморфизмов абелевых p-групп. В книге показаны разные способы доказательства классификации моделей по элементарным свойствам: с помощью насыщенных моделей, с помощью взаимной интерпретации моделей-параметров и производных моделей (в том числе и языка второго порядка), с помощью теоремы об изоморфизме.
-
Категория: монографии
-
Правообладатель: МЦНМО
-
Год написания: 2016
-
Возрастное ограничение: 0+
-
ISBN: 978-5-4439-2488-5
-
Легальная стоимость: 220.00 руб.
Читать книгу «Элементарная и близкие к ней логические эквивалентности классических и универсальных алгебр» онлайн: