Проблема фрагментарной когерентности в генеративных языковых моделях при обработке протяженных контекстов: архитектурные и методологические решения

Антон Александрович Белявский. Проблема фрагментарной когерентности в генеративных языковых моделях при обработке протяженных контекстов: архитектурные и методологические решения
Антон Александрович Белявский. Проблема фрагментарной когерентности в генеративных языковых моделях при обработке протяженных контекстов: архитектурные и методологические решения
4.45 из 5, отдано 20 голосов
В докладе исследуется проблема фрагментарной когерентности (FCP) в больших языковых моделях (LLM), таких как DeepSeek, при обработке объёмных документов. FCP проявляется в том, что модель, вместо целостной переработки текста, генерирует разрозненные фрагменты, перекладывая задачу их интеграции на пользователя. Анализируются коренные причины: архитектурные ограничения механизма внимания, приоритизация локального контекста, неадаптированность обучения для сложного редактирования. Предлагается многоуровневое решение, включающее архитектурные инновации (иерархическое внимание, динамическая память), методологии работы (стратегическое чанкирование, мастер-промпты) и новые парадигмы обучения (RL для глобальной когерентности). Доклад завершается протоколом для эмпирической валидации методов.

Читать книгу «Проблема фрагментарной когерентности в генеративных языковых моделях при обработке протяженных контекстов: архитектурные и методологические решения» онлайн:

Комментарии ():

Вам также может понравиться:

Оставайтесь на связи

Будьте в курсе новостей о выходящих книгах, подпишитесь на нашу еженедельную рассылку:
© 2011-2024. Your Lib. All Rights Reserved.